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Abstract—Cloud computing as an emerging technology trend
is expected to reshape the advances in information technology.
In this paper, we address two fundamental issues in a cloud
environment: privacy and efficiency. We first review a private
keyword-based file retrieval scheme proposed by Ostrovsky et.
al. Then, based on an aggregation and distribution layer (ADL),
we present a scheme, termed efficient information retrieval for
ranked query (EIRQ), to further reduce querying costs incurred
in the cloud. Queries are classified into multiple ranks, where a
higher ranked query can retrieve a higher percentage of matched
files. Extensive evaluations have been conducted on an analytical
model to examine the effectiveness of our scheme.

Index Terms—Cloud computing, efficiency, privacy.

I. INTRODUCTION

Cloud computing as an emerging technology is expected

to reshape the information technology processes in the near

future. A typical cloud application would have a data owner

outsourcing data services to a cloud, where the data is stored

in a keyword-value form, and users could retrieve the data

with several keywords. Since a cloud is operated by a third

party, there have been some concerns over the possible privacy

leaks that may occur. Such concerns have led researchers to

propose various techniques to protect user privacy.

A key privacy search solution was proposed by Ostrovsky

et al. [1], which can provide the same privacy level as down-

loading the entire database from the cloud with significantly

less communication costs. By asking the cloud to return the

entire database, the cloud cannot know which files are really

interested by a user. However, the Ostrovsky scheme has a high

computation cost, since it must require the cloud to process

the encrypted query on every file in a collection; Otherwise,

the cloud will learn that certain files are not related to that

user’s query. Therefore, it will quickly become a performance

bottleneck when the cloud needs to process thousands of

queries over a collection of hundreds of thousands of files.

We argue that subsequently proposed improvements, like [2],

also have the same drawback.

To make private search applicable in a cloud environment,

in our previous work [3], we introduce an aggregation and

distribution layer (ADL)-a middleware layer between the users

and the cloud. We envision that an ADL will be deployed in

an organization that has outsourced the data operations to a

cloud. The ADL will aggregate queries from multiple users

and send a combined query to the cloud. Given the combined

Fig. 1. Alice and Bob want to retrieve 50% of files that match their queries.

query, the cloud needs to execute the query only once and

return all matched files to the ADL. Furthermore, since the

files of most interest to the users need to be returned only once,

the communication costs will also be reduced. To illustrate,

let us assume that files F1, F2, and F3, which are stored

in the cloud, are described with keywords “A, B”, “B”, and

“C”, and Alice and Bob query data with “A, B” and “A, C”,

respectively. Under the ADL, the cloud needs to execute the

query only once to return F1, F2, F3 to the ADL. Compared

to the Ostrovsky scheme, the computation and communication

costs are saved by 50% and 25%, respectively. Note that

introducing the ADL will incur some processing delay for

aggregating queries. However, the degree of aggregation can

be controlled through a time-out mechanism to meet a given

processing delay requirement. When the time-out is set to zero,

this is degraded to the normal sequential search.

In this paper, we propose an improvement based on our

previous work, where the cloud can return a certain percentage

of matched files to the user. This is motivated by the fact that

under certain cases, a user may only be interested in a certain

percentage of matched files. By returning a smaller percentage

of files, the communication cost can be reduced. To illustrate,

let us assume that both Alice and Bob only wants 50% of the

files that match their queries as shown in Fig. 1. To satisfy

their requirements, the cloud only needs to return F1 to the

ADL, where the communication cost is further saved by 67%.

Motivated by this goal, we design a scheme, termed Effi-

cient Information retrieval for Ranked Query (EIRQ), where

each user can choose the rank of his query to determine the

percentage of returned matched files. In general, the higher

the rank of the query is, the higher the percentage of returned

matched files. The basic idea of EIQR is to construct a privacy-
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preserving mask matrix that allows the cloud to filter out a

certain percentage of matched files. This is not a trivial work,

since the cloud needs to correctly filter out files according to

the rank of queries, without knowing the rank of each query

nor which files are returned/ filtered out.

Our key contributions are as follows: (1) EIRQ can provide

differential query services, where the queries with higher rank

can retrieve higher percentage of matched files. (2) EIRQ

can perfectly protect user privacy while providing differential

query services. (3) Extensive experiments were performed on

an analytical model to validate our scheme.

II. RELATED WORK

Our work aims to provide differential query services while

protecting user privacy. To the best of our knowledge, no

previous works have addressed this problem. Existing research

that is similar to ours can be found in the areas of private

searching and ranked searchable encryption.

Private searching is proposed by [1], where the data is stored

in the clear form, and the query is encrypted with the Paillier

cryptosystem. The cloud stores all files into a compact buffer,

with which the user can successfully recover all wanted files

with high probability. In the following work, [2] reduced the

communication cost in [1] by solving a set of linear programs;

[4] presented an efficient decoding mechanism for private

searching. The main drawback of the current private searching

techniques is that both the computation and communication

costs grow linearly with the number of users that are executing

searches. Thus, when applying these schemes to a large-scale

cloud environment, querying costs will be extensive.

Ranked searchable encryption enables users to retrieve the

most matched files from the cloud in the case that both

the query and data are in the encrypted form. The work by

[5], which only supports single-keyword searches, encrypts

files and queries with Order Preserving Symmetric Encryption

(OPSE) [6] and utilizes keyword frequency to rank results.

Their following work [7], which supports multiple-keyword

searches, uses the secure KNN technique [8] to rank results

based on inner products. The main limitation of these ap-

proaches is that user access privacy [9] will not be preserved.

III. BACKGROUND

A. System Model

The system consists of three types of entities: cloud, ag-

gregation and distribution layer (ADL), and users. For ease

of explanation, in this paper, we only use a single ADL, but

multiple ADLs can be deployed as necessary. Multiple files

are stored in a potentially untrusted cloud, where each file

is described by several distinct keywords. The union of all

keywords form a dictionary. Users will query the ADL using

keywords from the dictionary. The ADL will aggregate user

queries and query the cloud with a combined query. The cloud

will return the files matching the combined query to the ADL.

To reduce the communication cost, a different query service

is provided to allow each user to select a particular rank for

his query. In general, the higher the rank of the user query

TABLE I
SUMMARY OF NOTATIONS

Notation Description

Dic Public dictionary
d Number of keywords in Dic
r Highest user rank
Q Query
M Mask matrix
Fi, |Fi| File name, file content
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Fig. 2. Comparison of communication costs among different queries.

is, the more matched files will be returned to the user. This

feature is useful when there are a large number of files that

match a user’s query, but the user only needs a small subset

of them. We can illustrate this using the following example.

Let us assume that Alice wants to retrieve 2% of the files

that contain keywords “A, B”, and Bob wants to retrieve 20%
of the files that contain keywords “A, C”. Suppose that the

cloud holds 500 files described by keywords “A, B” and 500

files described by keywords “A, C”. Without combination, the

cloud will have to return 2000 files, and without ranking, the

cloud will have to return 1000 files, but only 110 of which are

actually needed. Fig. 2 illustrates the differences. The notations

used in our schemes are shown in Table I.

B. Security Requirements

The ADL is assumed to be trusted by all of the users, and

the communication channels are assumed to be secured under

SSH. Each user individually sends the query to the ADL,

which will distribute appropriate files to each user. As long

as the ADL is trusted and correctly executes our schemes, the

user cannot know anything about other users’ interests. Thus,

the cloud is the only adversary for each user. The cloud is

assumed to be honest but curious. That is, it will obey our

schemes, but still want to know some additional information.

User privacy can be divided into search privacy and access

privacy, where the cloud neither learns what the user is

searching for nor which files are returned to a user. Since

user queries are classified into multiple ranks, rank privacy, a

new kind of user privacy, also needs to be protected against the

cloud. Rank privacy entails hiding the rank of each query from

the cloud, i.e., the cloud provides differential query services

without knowing which level of service is chosen by the user.

Our security goal is to thoroughly protect user search privacy,

access privacy, and rank privacy against the cloud.

C. Overview of the Ostrovsky Scheme

We briefly introduce the Ostrovsky scheme [1], which relies

on a public key cryptosystem, the Paillier cryptosystem. Let
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Algorithm 1 Ostrovsky scheme

GenerateQuery (run by user)

for i=1 to d do

if the i-th keyword in the dictionary Dic[i] is chosen then

Q[i] = 1 else Q[i] = 0
Encrypt Q[i] with the user’s public key

PrivateSearch (run by cloud)

for each file Fj in the cloud do

for i=1 to d do

cj =
∏

Dic[i]∈Fj
Q[i]; ej = c

|Fj |
j

Multiply (cj , ej) many times in a compact buffer

FileRecover (run by user)

Decrypt the buffer to obtain plaintext pair (c′j , e
′
j)

if c′j 6= 0 then recover file content with e′j/c
′
j

TABLE II
SAMPLE FILES IN THE CLOUD

File name File keywords File content

F1 A,B |F1|
F2 B,C |F2|
F3 C,D |F3|
F4 C |F4|
F5 D |F5|

E(m) denote the encryption of plaintext m. The Paillier

cryptosystem has the following homomorphic properties:

• E(a) · E(b) = E(a+ b)
• E(a)b = E(a · b)

The Ostrovsky scheme consists of three algorithms, as

shown in Alg. 1. We use a simple example to illustrate

its working process as follows: public dictionary Dic =
〈A,B,C,D〉 and files stored in the cloud are as in Table II;

A user, Alice, wishes to retrieve files with keywords “A, B”.

In the first step, Alice runs the GenerateQuery algorithm to

generate a query Q = 〈E(1), E(1), E(0), E(0)〉, where each

entry is an encryption of 1 if the corresponding keyword is

chosen; otherwise it is 0.

In the second step, the cloud runs the PrivateSearch al-

gorithm to generate occurrence-content pairs. For example,

user keywords “A, B” appear in F1, both of which correspond

to E(1) in user query Q. Thus, the occurrence of the user

keywords is the product of corresponding entries in Q, i.e.,

c1 = E(1) · E(1) = E(1 + 1) = E(2). File content is then

powered by the occurrence, i.e., e1 = c
|F1|
1 = E(2 · |F1|).

Then, the cloud maps each pair many times to a compact

buffer. For each buffer entry, there are three statuses: survival,

collision, and mismatch, where a collision will appear only

when more than one matched file is mapped, a survival will

appear when only one matched file is mapped, and a mismatch

will appear when unmatched files are mapped. For example,

in Fig. 3, the second entry is a collision. When a collision

happens, no files in the entry can be recovered.

In the third step, Alice runs the FileRecover algorithm

to recover files. Note that if a file is mismatching Q, then

the occurrence is an encryption of 0, and the file content is

Fig. 3. Mapping files to a buffer. {a} is used to denote E(a); thus, E(a) ·
E(b) and E(a)b are replaced with {a+ b} and {a · b}, respectively.

processed to be an encryption of 0. Otherwise, the occurrence

is an encryption of some value v larger than 0, and the file

content is processed to be an encryption of v · |Fj |. Therefore,

the user can obtain file content by dividing the content by the

occurrence. This scheme also provides a collision-detection

mechanism to let the user get rid of the conflicting copies. We

refer readers to [1] for more details.

IV. PROTOCOL DESCRIPTION

A. Intuition

The basic idea of EIQR is that a privacy-preserving mask

matrix is used to filter out a certain percentage of files before

mapping them to a buffer. Before illustrating EIQR, two

fundamental problems should be resolved:

First, we should determine the relationship between query

rank and the percentage of returned matched files. Suppose

that queries are classified into r ranks, where Rank-0 queries

have the highest rank and Rank-r queries have the lowest

rank. In this paper, we simply determine this relationship by

allowing Rank-i queries to retrieve (1−i/r) percent of statuses

matched files. Therefore, Rank-0 queries can retrieve 100% of

the matched files, and Rank-r queries cannot retrieve any files.

Second, we should determine which matched files will

be returned and which will not. In this paper, we simply

determine the probability of a file being returned by the highest

rank of queries matching this file. Specifically, we first rank

each keyword by the highest rank of queries choosing it, and

then rank each file by the highest rank of its keywords. If the

file rank is i, then the probability of being filtered out is i/r.

B. EIRQ

EIRQ consists of four algorithms, as shown in Fig. 4. We

will use the following example to describe its working process.

The dictionary and files are the same as in Section III-(C);

users are classified into four ranks, where Alice, a Rank-0 user,

queries with keywords “A, B”, and Bob, a Rank-1 user, uses

keywords “A, C”. According to our rules, “A, B” are Rank-

0 keywords, “C” is a Rank-1 keyword, and “D” is a Rank-4

keyword. Correspondingly, F1 and F2 are Rank-0 files which

will be returned with a probability of 1, F3 and F4 are Rank-1

files which will be returned with a probability of 75%, and F5

is a Rank-4 file which will not be returned.

Step 1: Each user runs the QueryGen algorithm to send a

query to the ADL, where the user query consists of the chosen

keywords and the query rank.

Step 2: Given users’ queries, the ADL runs the Matrix-

Construct algorithm (Alg. 2) to send a mask matrix to the
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Fig. 4. Working process of EIRQ.

cloud. The mask matrix M is a d-row and r-column matrix,

where d is the number of keywords in the dictionary, and r
is the highest rank of queries. The mask matrix M can be

constructed as follows: For each keyword w, the ADL first

sets w’s rank with l, the highest query rank choosing this

keyword. Then, for the row corresponding to keyword w, the

ADL sets the first r − l columns to 1 and the last l columns

to 0. The example mask matrix is shown in Fig. 5-(a). Note

that, the reason for setting the first r− l columns, rather than

random r − l columns, to 1 is to ensure that, given any two

files with rank l, the probability of the product of the columns

corresponding to file keywords being 0 is l/r.

Step 3: Based on the mask matrix, the cloud runs the

FileFilter algorithm (Alg. 3) to filter out a certain percentage

of matched files and returns a union buffer to the ADL. The

process is as follows: For each file Fj , the cloud first multiplies

the k-th columns that correspond to Fj’s keywords in the

mask matrix to obtain cj , where k = j mod r. The example

columns chosen for each file are as shown in Fig. 5-(b). Then,

the cloud powers the file content to cj to obtain ej and maps

(ci, ei) to many entries of a union buffer as the Ostrovsky

scheme. Here, cj denotes the occurrence of ranked keywords

in file Fj . Thus, cj will be larger than 0, and file Fj will be

returned only when l + k ≤ r, where k = j mod r.

Step 4: The ADL runs the ResultDivide algorithm to

distribute files to each user. The ADL first recovers all files

that match user queries as the FileRecover algorithm in the

Ostrovsky scheme. Then, the ADL distributes appropriate files

to each user based on the user queries. To make sure that

the ADL distributes files correctly, we can require the cloud

to attach file keywords with the file content. Thus, the ADL

can find out all of the files that match each user’s query by

executing keyword searches.

V. SECURITY ANALYSIS

We will show that EIRQ can provide search privacy, access

privacy, and rank privacy as follows:

Search privacy. In EIRQ, the combined query (the mask

matrix) from the ADL to the cloud is encrypted with the ADL’s

public key. Therefore, the cloud cannot deduce what each user

is searching for from the encrypted query.

Algorithm 2 MatrixConstruct

for i = 1 to d do

Set l to be the highest query rank choosing the i-th

keyword in Dic
for j = 1 to r do

if l + j ≤ r then M [i, j] = 1 else M [i, j] = 0
Encrypt M [i, j] with the ADL’s public key

Algorithm 3 FileFilter

for each file Fj stored in the cloud do

for i = 1 to d do

k = j mod r; cj =
∏

Dic[i]∈Fj
M [i, k]; ej = c

|Fj |
j

Multiply pair (cj , ej) many times to a compact buffer

Fig. 5. Sample mask matrix and chosen columns.

Access privacy. In EIRQ, the cloud processes each file

similarly to generate a compact buffer where unmatched files

are encrypted to 0, while conducting searches. The buffer

returned to the ADL is encrypted with the ADL’s public key.

Therefore, the cloud cannot know which files are actually

returned from the encrypted buffer.

Rank privacy. In EIRQ, the mask matrix from the ADL

to the cloud is a d-row and r-column matrix, where r is the

information that is the information that we leak more than [1].

Given r, the cloud only knows that all users are classified into

r ranks without knowing how many users are in each rank, nor

which users are in which ranks. Therefore, user rank privacy

is protected.

VI. EVALUATION

In this section, we will first show the percentage of returned

matched files for each ranked query to justify that EIQR can

provide differential query services. Then, we will compare

computation and communication costs in the cloud between

EIRQ and private search under ADL without ranking (ADL).

We will set buffer size and mapping times based on the

Ostrovsky scheme. The parameters used in experiments are

shown in Table III.

A. Percentage of Returned Files

Since users are classified into 0 to 4 ranks, queries

in Rank-0, Rank-1, Rank-2, Rank-3, and Rank-4 should

retrieve 100%, 75%, 50%, 25%, 0% of the files that match

their queries, respectively. From Fig. 6, we know that

Rank-0, Rank-1, Rank-2, Rank-3, and Rank-4 can retrieve
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TABLE III
PARAMETERS

Notation Description Value

|F | File content 1KB
n The number of users 1-100
d The number of keywords in the dictionary 100
q The number of keywords in each query 1-5
f The number of keywords in each file 1-5

t The number of files stored in the cloud 103

r The highest user rank 4

Fig. 6. Percentage of returned files.

100%, 75%, 52%, 29%, 0% of matched files, which justify that

EIRQ can provide differential query services.

B. Computation Cost

Since the computational cost is mainly determined by the

number of exponentiations [1], we will compare the compu-

tation cost between ADL and EIRQ under different parameter

settings. In each setting, the number of users in each rank is

from 1 to 25, where each user randomly chooses 1-5 keywords

from the dictionary of 100 keywords. The comparisons of

computation cost are shown in Fig. 7, where the computation

cost approximately ranges from 14.8270s to 14.8788s in ADL,

and from 14.8664s to 14.9269s in EIRQ.

C. Communication Cost

We will compare the buffer size between EIRQ and ADL.

The buffer size depends on the number of files matching

queries, which is different when users have different common

interests, which can be calculated with 1− q/
∑n

i=1 qi, where

q is the number of keywords in the combined query, and qi is

the number of keywords in the i-th user’s query. Therefore, we

will analyze the buffer size under different common interests

(4 common keywords and 1 common keyword).

From Fig. 8, we know that EIRQ consumes less bandwidth

as the common interests increase. Note that EIRQ still works

better than ADL when only a few users are conducting

searches. For example, when there are 5 users in each rank

querying with 4 common keywords, EIRQ generates only a

439KB buffer, but ADL generates a 834KB buffer.

VII. CONCLUSION

In this paper, we proposed a scheme based on an ADL

to allow secure differential query services for a cloud envi-

ronment. By using our scheme, users of different ranks can

retrieve different percentages of files that match their queries
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Fig. 7. Comparison of computation cost in the cloud.
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Fig. 8. Comparison of communication cost.

so as to make the cloud services more scalable and flexible.

The main drawback is that the assumption of having a trusted

third party may not be realistic. For our future work, we will

explore an extension of our solution that would apply to the

case where we don’t need to trust the ADL.

ACKNOWLEDGMENTS

This research was supported in part by the NSF grants

ECCS 1128209, CNS 1065444, CCF 1028167, CNS 0948184,

CCF 0830289; and the National Natural Science Foundation of

China under Grant No. 61073037, the Hunan Provincial Sci-

ence and Technology Program under Grant No. 2010GK2003,

and the National 973 Basic Research Program of China under

Grant No. 2011CB302800.

REFERENCES

[1] R. Ostrovsky and W. Skeith III, “Private searching on streaming data,”
in Proc. of ACM CRYPTO, 2005.

[2] J. Bethencourt, D. Song, and B. Waters, “New techniques for private
stream searching,” ACM Transactions on Information and System Secu-

rity, 2009.
[3] Q. Liu, C. C. Tan, J. Wu, and G. Wang, “Cooperative private searching in

clouds,” http : //www.cis.temple.edu/ cctan/TR1.pdf , Tech. Rep.,
2011.9.

[4] G. Danezis and C. Diaz, “Improving the decoding efficiency of private
search,” in IACR Eprint archive number 024, 2006.

[5] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure ranked keyword
search over encrypted cloud data,” in Proc. of IEEE ICDCS, 2010.

[6] A. Boldyreva, N. Chenette, Y. Lee, and A. Oneill, “Order-preserving
symmetric encryption,” Advances in Cryptology-EUROCRYPT, 2009.

[7] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving multi-
keyword ranked search over encrypted cloud data,” in Proc. of IEEE

INFOCOM, 2011.
[8] W. Wong, D. Cheung, B. Kao, and N. Mamoulis, “Secure knn computa-

tion on encrypted databases,” in Proc. of ACM SIGMOD, 2009.
[9] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable sym-

metric encryption: improved definitions and efficient constructions,” in
Proc. of ACM CCS, 2006.


